Assimilation of spatial distributed water levels into a shallow-water flood model. Part II: using a remote sensing image of Mosel river

نویسندگان

  • Renaud Hostache
  • Xijun Lai
  • Jerome Monnier
  • Christian Puech
  • Jérôme Monnier
چکیده

With rapid flood extent mapping capabilities, Synthetic Aperture Radar (SAR) images of river inundation prove to be very relevant to operational flood management. In this context, a recently developed method provides distributed water levels from SAR images. Furthermore, in view of improving numerical flood prediction, a variational data assimilation method (4D-var) using such distributed water level has been developed in Part I of this study. This method combines an optimal sense remote sensing data (distributed water levels extracted from spatial images) and a 2D shallow water model. In the present article (Part II of the study), we also derive water levels with a ± 40 cm average vertical uncertainty from a RADARSAT-1 imPreprint submitted to Journal of hydrology 29 April 2010 age of a Mosel River flood event (1997, France). Assimilated in a 2D shallow water hydraulic model using the 4D-var developed method, these SAR derived spatially distributed water levels prove to be capable of enhancing model calibration. Indeed, the assimilation process can identify optimal Manning friction coefficients, at least in the river channel. Moreover, used as a guide for sensitivity analysis, remote sensing water levels allow also identifying some areas in the floodplain and the channel where Manning friction coefficients are homogeneous. This allows basing the spatial segmentation of roughness coefficient on floodplain hydraulic functioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assimilation of spatially distributed water levels into a shallow-water flood model. Part I: Mathematical method and test case

Recent applications of remote sensing techniques produce rich spatially distributed observations for flood monitoring. In order to improve numerical flood prediction, we have developed a variational data assimilation method (4D-var) that combines remote sensing data (spatially distributed water levels extracted from spatial images) and a 2D shallow water model. In the present paper (part I), we...

متن کامل

Assimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential

We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA’s Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of G...

متن کامل

Integrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation

This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspi...

متن کامل

Calibration and sequential updating of a coupled hydrologic-hydraulic model using remote sensing-derived water stages

Two of the most relevant components of any flood forecasting system, namely the rainfall-runoff and flood inundation models, increasingly benefit from the availability of spatially distributed Earth Observation data. With the advent of microwave remote sensing instruments and their all weather capabilities, new opportunities have emerged over the past decade for improved hydrologic and hydrauli...

متن کامل

Evaluation of Water Extraction Indices Using Landsat Satellite Images (Case Study: Gamasiab River of Kermanshah)

Water is one of most important human needs for life. According to importance of subject, discussion of management and utilization of water resources has become one of the most important global issues. Remote sensing data are often used in water body extraction studies and type of remote sensing data used plays an important role in water body extraction. In this study, ability of Landsat satelli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017